34 research outputs found

    Repair-Mediated Duplication by Capture of Proximal Chromosomal DNA Has Shaped Vertebrate Genome Evolution

    Get PDF
    DNA double-strand breaks (DSBs) are a common form of cellular damage that can lead to cell death if not repaired promptly. Experimental systems have shown that DSB repair in eukaryotic cells is often imperfect and may result in the insertion of extra chromosomal DNA or the duplication of existing DNA at the breakpoint. These events are thought to be a source of genomic instability and human diseases, but it is unclear whether they have contributed significantly to genome evolution. Here we developed an innovative computational pipeline that takes advantage of the repetitive structure of genomes to detect repair-mediated duplication events (RDs) that occurred in the germline and created insertions of at least 50 bp of genomic DNA. Using this pipeline we identified over 1,000 probable RDs in the human genome. Of these, 824 were intra-chromosomal, closely linked duplications of up to 619 bp bearing the hallmarks of the synthesis-dependent strand-annealing repair pathway. This mechanism has duplicated hundreds of sequences predicted to be functional in the human genome, including exons, UTRs, intron splice sites and transcription factor binding sites. Dating of the duplication events using comparative genomics and experimental validation revealed that the mechanism has operated continuously but with decreasing intensity throughout primate evolution. The mechanism has produced species-specific duplications in all primate species surveyed and is contributing to genomic variation among humans. Finally, we show that RDs have also occurred, albeit at a lower frequency, in non-primate mammals and other vertebrates, indicating that this mechanism has been an important force shaping vertebrate genome evolution

    Specificity protein, Sp1-mediated increased expression of Prdx6 as a curcumin-induced antioxidant defense in lens epithelial cells against oxidative stress

    Get PDF
    Peroxiredoxin 6 (Prdx6) is a pleiotropic oxidative stress-response protein that defends cells against reactive oxygen species (ROS)-induced damage. Curcumin, a naturally occurring agent, has diversified beneficial roles including cytoprotection. Using human lens epithelial cells (hLECs) and Prdx6-deficient cells, we show the evidence that curcumin protects cells by upregulating Prdx6 transcription via invoking specificity protein 1 (Sp1) activity against proapoptotic stimuli. Curcumin enhanced Sp1 and Prdx6 mRNA and protein expression in a concentration-dependent manner, as evidenced by western and real-time PCR analyses, and thereby negatively regulated ROS-mediated apoptosis by blunting ROS expression and lipid peroxidation. Bioinformatic analysis and DNA–protein binding assays disclosed three active Sp1 sites (−19/27, −61/69 and −82/89) in Prdx6 promoter. Co-transfection experiments with Sp1 and Prdx6 promoter–chloramphenicol acetyltransferase (CAT) constructs showed that CAT activity was dramatically increased in LECs or Sp1-deficient cells (SL2). Curcumin treatment of LECs enhanced Sp1 binding to its sites, consistent with curcumin-dependent stimulation of Prdx6 promoter with Sp1 sites and cytoprotection. Notably, disruption of Sp1 sites by point mutagenesis abolished curcumin transactivation of Prdx6. Also, curcumin failed to activate Prdx6 expression in the presence of Sp1 inhibitors, demonstrating that curcumin-mediated increased expression of Prdx6 was dependent on Sp1 activity. Collectively, the study may provide a foundation for developing transcription-based inductive therapy to reinforce endogenous antioxidant defense by using dietary supplements

    Predicting tissue specific cis-regulatory modules in the human genome using pairs of co-occurring motifs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Researchers seeking to unlock the genetic basis of human physiology and diseases have been studying gene transcription regulation. The temporal and spatial patterns of gene expression are controlled by mainly non-coding elements known as cis-regulatory modules (CRMs) and epigenetic factors. CRMs modulating related genes share the regulatory signature which consists of transcription factor (TF) binding sites (TFBSs). Identifying such CRMs is a challenging problem due to the prohibitive number of sequence sets that need to be analyzed.</p> <p>Results</p> <p>We formulated the challenge as a supervised classification problem even though experimentally validated CRMs were not required. Our efforts resulted in a software system named CrmMiner. The system mines for CRMs in the vicinity of related genes. CrmMiner requires two sets of sequences: a mixed set and a control set. Sequences in the vicinity of the related genes comprise the mixed set, whereas the control set includes random genomic sequences. CrmMiner assumes that a large percentage of the mixed set is made of background sequences that do not include CRMs. The system identifies pairs of closely located motifs representing vertebrate TFBSs that are enriched in the training mixed set consisting of 50% of the gene loci. In addition, CrmMiner selects a group of the enriched pairs to represent the tissue-specific regulatory signature. The mixed and the control sets are searched for candidate sequences that include any of the selected pairs. Next, an optimal Bayesian classifier is used to distinguish candidates found in the mixed set from their control counterparts. Our study proposes 62 tissue-specific regulatory signatures and putative CRMs for different human tissues and cell types. These signatures consist of assortments of ubiquitously expressed TFs and tissue-specific TFs. Under controlled settings, CrmMiner identified known CRMs in noisy sets up to 1:25 signal-to-noise ratio. CrmMiner was 21-75% more precise than a related CRM predictor. The sensitivity of the system to locate known human heart enhancers reached up to 83%. CrmMiner precision reached 82% while mining for CRMs specific to the human CD4<sup>+ </sup>T cells. On several data sets, the system achieved 99% specificity.</p> <p>Conclusion</p> <p>These results suggest that CrmMiner predictions are accurate and likely to be tissue-specific CRMs. We expect that the predicted tissue-specific CRMs and the regulatory signatures broaden our knowledge of gene transcription regulation.</p

    The torso response element binds GAGA and NTF-1/Elf-1, and regulates tailless by relief of repression

    No full text
    Modulation of transcription factor activity leading to changes in cell behavior (e.g., differentiation versus proliferation) is one of the critical outcomes of receptor tyrosine kinase (RTK) stimulation. In the early Drosophila embryo, activation of the torso (tor) RTK at the poles of the embryo activates a phosphorylation cascade that leads to the spatially specific transcription of the tailless (tll) gene. Our analysis of the tor response element (tor-RE) in the tll promoter indicates that the key activity modulated by the tor RTK pathway is a repressor present throughout the embryo. We have mapped the tor-RE to an 11-bp sequence; using this sequence as the basis for protein purification, we have determined that the proteins GAGA and NTF-1 (also known as Elf-1, product of the grainyhead gene) bind to the tor-RE. We demonstrate that NTF-1 can be phosphorylated by MAPK (mitogen- activated protein kinase), and that tll expression is expanded in embryos lacking maternal NTF-1 activity; these results make NTF-1 a likely target for modulation by the tor RTK pathway in vivo. The data presented here support a model in which activation of the tor RTK at the poles of the embryos leads to inactivation of the repressor and therefore, to transcriptional activation (by activators present throughout the embryo) of the tll gene at the poles of the embryo.link_to_subscribed_fulltex

    Binding sites for transcription factor NTF-1/Elf-1 contribute to the ventral repression of decapentaplegic

    No full text
    The Dorsal morphogen is a transcription factor that activates some genes and represses others to establish multiple domains of gene expression along the dorsal/ventral axis of the early Drosophila embryo. Repression by Dorsal appears to require accessory proteins that bind to corepression elements in Dorsal-dependent regulatory modules called ventral repression regions (VRRs). We have identified a corepression element in decapentaplegic (dpp), a zygotically active gene that is repressed by the Dorsal morphogen. This dpp repression element (DRE) is located within a previously identified VRR and close to essential Dorsal-binding sites. We have purified a factor from Drosophila embryo extracts that binds to the DRE but not to mutant forms of the DRE that fail to support efficient repression. This protein also binds to an apparently essential region in a VRR associated with the zerknullt (zen) gene. One of the DREs in the dpp VRR overlaps the binding site for a potential activator protein suggesting that one mechanism of ventral repression may be the mutually exclusive binding of repressor and activator proteins. We have found the DRE-binding protein to be identical to NTF-1 (equivalent to Elf-1, the product of the grainyhead gene), a factor originally identified as an activator of the Ultrabithorax and Dopa decarboxylase promoters. NTF-1 mRNA is synthesized during oogenesis and deposited in the developing oocyte where it is available to contribute to ventral repression during early embryogenesis. Previous studies have shown that overexpression of NTF-1 in the postblastoderm embryo results in a phenotype that is consistent with a role for this factor in the repression of dpp later in embryogenesis.link_to_subscribed_fulltex

    Diverse roles of Groucho/Tup1 co-repressors in plant growth and development

    No full text
    Transcriptional regulation involves coordinated and often complex interactions between activators and repressors that together dictate the temporal and spatial activity of target genes. While the study of developmental regulation has often focused on positively acting transcription factors, it is becoming increasingly clear that transcriptional repression is a key regulatory mechanism underpinning many developmental processes in both plants and animals. In this review, we focus on the plant Groucho (Gro)/Tup1-like co-repressors and discuss their roles in establishing the apical-basal axis of the developing embryo, maintaining the stem cell population in the shoot apex and determining floral organ identity. As well as being developmental regulators, recent studies have shown that these co-repressors play a central role in regulating auxin and jasmonate signaling pathways and are also linked to the regulation of pectin structure in the seed coat. These latest findings point to the Gro/Tup1-like co-repressors playing a much broader role in plant growth and development than previously thought, an observation that underlines the central importance of transcriptional repression in plant gene regulation
    corecore